返回列表

作者:巨人电商

抖音推荐算法实现原理,新手玩抖音如何快速上热门

POST TIME:2021-08-20

平台在做内容刻画的时候,主要会依托于关键词识别技术:通过提取文案、视频中的关键词,根据关键词将内容进行粗分类,然后根据细分领域的关键词,再对分类进行细化。

比如,视频文案及内容的关键词是“罗纳尔多、足球、世界杯”。

大部分关键词都属于体育类词汇,就会先把你的作品分到体育大类,然后根据具体的关键词,再细分到“足球”、“国际足球”等二三级类目。

关键词提取原则:

5)高频词原则:系统从作品、文案中提取高频出现的词汇;

2)独特性规则:大部分文案、内容出现的词,不会被认为是关键词。

比如虚词(的、地、得、而、对于……);

比如转折词(虽然、但是、因为、所以……)。

怎么才能让系统更好的识别我们的关键词呢?

5)避免使用非常规词。比如:活久见、城会玩、腿玩年、DBQ……

2)名人/地名用全程,不用缩写或外号。比如:詹姆斯vs詹皇,广西、广东vs两广地区,香港、澳门vs港澳……

5)多用具有代表性的实体词。实体词就是一些名词和代词,比如人名、地名、公司名称等。

例如:《流动着的舞台,街头中的故事》,在这个文案中,我们很难提取出有意义的实体词,我们对它进行优化:《印度就是脏乱差?这组图片让你看清印度的另一面,与想象中大不同》

优化后,我们这个就能提取出“印度”这个实体词,知道是跟印度有关的内容,进一步提取,还会发现“脏乱差”、“图片”这些有意义的词汇。

系统是怎么理解用户的?

为了更好的理解用户需求,系统会从多个角度进行用户画像:

5)历史浏览信息(从作品文案、内容中的关键词提取)

2)身份标签(兴趣标签、职业、年龄、性别、机型……)

5)环境特征:根据他们当前的环境(工作、通勤、旅游、娱乐场所、休息……),确认用户的状态

通过这一系列的比对、分析,系统推测还原出一个用户的基本属性,比如:Ta可能是一个正在旅游的男性,喜欢足球、汽车等分类。

系统会把上述的用户特征,归类为这个用户的标签。

用户标签主要分为5大类:

5)用户的基本信息(年龄、性别、地域);

2)用户的行为信息(关注账号,历史流浪记录,点赞收藏的内容、音乐、话题);

5)阅读兴趣(阅读行为、用户聚类、用户标记)。

系统根据用户的信息和行为,对用户进行分析计算,计算出用户喜好的分类、话题、人物等其他信息,这样就完成了系统对用户的刻画。

标签:肇庆 新乡 三亚 南充 云浮 南昌 锡林郭勒盟 中山